Computational determination of aqueous pKa values of protonated benzimidazoles (part 1).
نویسندگان
چکیده
Benzimidazoles are the organic compounds investigated in this work. The experimental determination of the pKa values of protonated benzimidazoles in water is a challenge because of their low solubility. In addition, some derivatives are involved in tautomeric equilibria which increase the complexity of the theoretical pKa determinations. In the present study, different approaches are considered to develop a methodology for the accurate prediction of aqueous pKa values of protonated benzimidazoles at 298.15 K. We have considered different reaction schemes for approximating the acid dissociation equilibrium; two distinct equations are used for the calculation of pKa values, and a number of levels of theory and empirical corrections are applied in the process of working toward this aim. The best correlations between the experimental and calculated data are obtained at the B3LYP/6-31+G(d,p)-PCM(opt) level of theory. The predictive capabilities of the methodologies attempted are tested with two compounds that were not included in the set of benzimidazoles initially investigated. The direct calculations differ significantly from the expected values, but the pKa values calculated using the correlation equations are very similar and in reasonable agreement with the expected pKa values.
منابع مشابه
Computational determination of aqueous pKa values of protonated benzimidazoles (Part 2).
Our aim is to develop an effective computational procedure for predicting the aqueous acid equilibrium constants of protonated benzimidazoles at 298.15 K. The experimental determination of these values, apart from been laborious, is a challenge because of the low water solubility of these compounds. Using a variety of descriptors, quantitative structure-property relationships (QSPR) are explore...
متن کاملPrediction of accurate pKa values of some α-substituted carboxylic acids with low cost of computational methods
The acidity constants (pKa) of thirty four (34) ;-substituted carboxylic acids in aqueous solution havebeen calculated using conductor-like polarizable continuum (C-PCM) solvation model. The gasphaseenergies at the Density Functional Theory (DFT-MPW1PW91) and solvation energies atHartree Fock (HF) are combined to estimate the pKa values which are very close to the experimentalvalues where, and ...
متن کاملPotentiometric Determination of Acidity Constants of Some Synthesized Organic Compounds in Organic-Water Media
The acidity constants of some synthesized protonated pyrazolo quinazoline compounds were determined potentiometrically at ionic strength of 0.1 M in DMF: water (60:40 v/v) system at different temperatures (298.15 K to 318.15 K). The pKa values have been found to increase with increasing electron-donating nature of substitutions. Some thermodynamics parameters such as enthalpy (ΔH°), Gibb’s free...
متن کاملQuantum mechanics investigation of acid dissociation constant of carboxylic acids in aqueous solution
According to the Bronsted definition, any compound which has a hydrogen atom is an acid, since itmay be lost as a proton. A thermodynamical cycle is proposed to calculate absolute pKa values forBronsted acids in aqueous solution. The equilibrium of dissociation of a Bronsted acid depends onthe interaction of the acid and its conjugate base with solvent molecules. There fore the pKa valuedepends...
متن کاملTheoretical Calculation of pKa Values of Amidines in Aqueous Solution Using an Implicity Solvation Model
Amidines are special nitrogen analogues of the carboxylic acid, containing two N of different functionality. One is formally single bonded like-amino nitrogen (N) and the other is a formally double-bonded imino nitrogen (N), where protonation occurs first. The pKa’s of amidines vary from neutral to slightly acidic (pKa ranges from 4.4 to 14) depending on their substitution pattern. Amidines are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 110 18 شماره
صفحات -
تاریخ انتشار 2006